NAD malic enzyme and the control of carbohydrate metabolism in potato tubers.
نویسندگان
چکیده
Potato (Solanum tuberosum) plants were transformed with a cDNA encoding the 59-kD subunit of the potato tuber NAD-dependent malic enzyme (NADME) in the antisense orientation. Measurements of the maximum catalytic activity of NADME in tubers revealed a range of reductions in the activity of this enzyme down to 40% of wild-type activity. There were no detrimental effects on plant growth or tuber yield. Biochemical analyses of developing tubers indicated that a reduction in NADME activity had no detectable effects on flux through the tricarboxylic acid cycle. However, there was an effect on glycolytic metabolism with significant increases in the concentration of 3-phosphoglycerate and phosphoenolpyruvate. These results suggest that alterations in the levels of intermediates toward the end of the glycolytic pathway may allow respiratory flux to continue at wild-type rates despite the reduction in NADME. There was also a statistically significant negative correlation between NADME activity and tuber starch content, with tubers containing reduced NADME having an increased starch content. The effect on plastid metabolism may result from the observed glycolytic perturbations.
منابع مشابه
Calystegines in potatoes with genetically engineered carbohydrate metabolism.
Calystegines are hydroxylated nortropane alkaloids derived from the tropane alkaloid biosynthetic pathway. They are strong glycosidase inhibitors and occur in vegetables such as potatoes, tomatoes, and cabbage. Calystegine accumulation in root cultures was described to increase with carbohydrate availability. Whether this is indicative for the in planta situation is as yet unknown. Potatoes are...
متن کاملMalate Oxidation in Plant Mitochondria via Malic Enzyme and the Cyanide-insensitive Electron Transport Pathway.
MALATE OXIDATION IN PLANT MITOCHONDRIA PROCEEDS THROUGH THE ACTIVITIES OF TWO ENZYMES: a malate dehydrogenase and a NAD(+)-dependent malic enzyme. In cauliflower, mitochondria malate oxidation via malate dehydrogenase is rotenone- and cyanide-sensitive. Addition of exogenous NAD(+) stimulates the oxidation of malate via malic enzyme and generates an electron flux that is both rotenone- and cyan...
متن کاملEffect of High Temperature on Plant Growth and Carbohydrate Metabolism in Potato.
This study was undertaken to determine the role of sucrose-metabolizing enzymes in altered carbohydrate partitioning caused by heat stress. Potato (Solanum tuberosum L.) genotypes characterized as susceptible and tolerant to heat stress were grown at 19/17[deg]C, and a subset was transferred to 31/29[deg]C. Data were obtained for plant growth and photosynthesis. Enzyme activity was determined f...
متن کاملبررسی میزان تغییر قندها و اسیدهای آلی ارقام سیب زمینی (مورن، مارفونا و آگریا) استان اصفهان طی انبارداری ، با روش کروماتوگرافی با کارایی زیاد
Physicochemical characteristics of potato (Solanum tuberosum L.) are very important for storage and processing qualities. The amount of reducing sugars (glucose and fructose) and organic acids at harvest, during and after storage is the most important factor. In this study, three potato cultivars (Moran, Marfona and Agria) were collected, dry cleaned and graded into three sizes. They were analy...
متن کاملMalate Dehydrogenase and NAD Malic Enzyme in the Oxidation of Malate by Sweet Potato Mitochondria.
Over a range of concentrations from less than 0.1 mm to more than 70 mm, sweet potato root mitochondria display a bimodal substrate saturation isotherm for malate. The high affinity portion of the isotherm has an apparent Km for malate of 0.85 mm and fits a rectangular hyperbolic function. The low affinity portion of the isotherm is sigmoid in character and gives an apparent S(0.5) of 40.6 mm a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 126 3 شماره
صفحات -
تاریخ انتشار 2001